\bar{r} par rapport au temps. La vitesse est dirigée suivant la tangente à la trajectoire en point donné dans le sens du mouvement du point A. (tout comme le vecteur $d\bar{r}$).

<u>L'accélération</u> \bar{a}_m donne l'accélération moyenne de variation du vecteur vitesse du point dans en un temps Δt (fig. 1.4).

$$\overline{a}_{m} = \frac{\overline{v}_{2} - \overline{v}_{1}}{\Delta t}$$

L'accélération \(\overline{a} \) est égale à la dérivée du vecteur vitesse par rapport au temps :

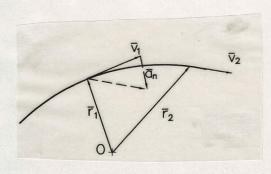


Fig. 1.4

$$\overline{a} = \frac{d\overline{v}}{dt} = \dot{\overline{v}}$$

$$\overline{a} = \ddot{\overline{r}}$$
(1.4)

Les points au-dessus du symbole indiquent la dérivation par rapport au temps.

De la sorte, en connaissant la relation $\bar{r} = \bar{r}(t)$ on peut trouver la vitesse \bar{v} et l'accélération \bar{a} à chaque instant.

On peut résoudre également le problème inverse : trouver $\overline{v}(t)$ et $\overline{r}(t)$ en connaissant l'accélération $\overline{a}=\overline{a}(t)$. Il s'avère que pour obtenir une solution univoque de ce problème, la seule relation $\overline{a}(t)$ ne suffit pas, il faut encore connaître ce qu'on appelle les conditions initiales et plus précisément, la vitesse \overline{v}_o et le rayon vecteur \overline{r}_o du point à un certain instant initial t=0. Par exemple, on examine le cas le plus simple, lorsqu'on cour du mouvement l'accélération du point $\overline{a}=$ constante.

L'accroissement élémentaire de la vitesse est

$$d\overline{v} = \overline{a}dt$$

En intégrant cette expression sur le temps de t=0 à t, on trouve pour ce temps l'accroissement du vecteur vitesse

$$\Delta \overline{\mathbf{v}} = \int_{0}^{t} \overline{\mathbf{a}} dt = \overline{\mathbf{a}} t \tag{1.5}$$

Mais la grandeur $\Delta \bar{v}$ n'est pas encore la vitesse \bar{v} cherchée. Pour la trouver, il faut connaître la vitesse \bar{v} à l'instant initial.

Donc

$$\overline{v} = \overline{v}_0 + \Delta \overline{v}$$
 ou $\overline{v} = \overline{v}_0 + \overline{a} t$ (1.6)

Le rayon vecteur r(t) d'un point se calcule d'une façon analogue.

L'accroissement élémentaire du rayon vecteur en un intervalle de temps dt est

$$d\overline{r} \neq \overline{v}dt$$
 (1.7)

En intégrant cette expression compte tenu de la relation $\overline{v}(t)$ obtenue, on détermine l'accroissement du rayon vecteur pour un temps allant de t=0 à t:

$$\Delta \overline{\mathbf{r}} = \int_0^t \overline{\mathbf{v}} dt = \overline{\mathbf{v}}_0 t + \overline{\mathbf{a}} t^2 / 2 \tag{1.8}$$

Pour trouver le rayon vecteur $\bar{r}(t)$ lui-même il faut connaître encore la position du point \bar{r}_0 à l'instant initial. Il vient

$$\overline{\mathbf{r}} = \overline{\mathbf{r}}_0 + \Delta \overline{\mathbf{r}}$$

$$\overline{\mathbf{r}} = \overline{\mathbf{r}}_0 + \overline{\mathbf{v}}_0 \mathbf{t} + \overline{\mathbf{a}} \mathbf{t}^2 / 2$$
(1.9)

<u>Système de coordonnées cartésien</u>. On lie invariablement au corps de référence un système d'axes Oxyz (fig. 1.5) dont les verseurs sont:

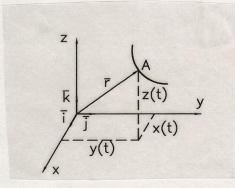


Fig. 1.5

 $\bar{i}, \bar{j}, \bar{k}$ La position du point A à l'instant t par rapport à l'origine des coordonnées est donnée, par les projections sur les axes x, y, z du rayon vecteur $\bar{r}(t)$

$$x = x(t)$$
 $y = y(t)$ $z = z(t)$ (1.10)

$$\overline{\mathbf{r}}(t) = \mathbf{x}(t)\overline{\mathbf{i}} + \mathbf{y}(t)\overline{\mathbf{j}} + \mathbf{z}(t)\overline{\mathbf{k}}$$
 (1.11)

Les expressions (1.10) représentent les équations du mouvement on les équations paramétriques de la trajectoire. En éliminant le temps t on obtient la forme de la trajectoire

 $f_1(x, y, z) = 0$ $f_2(x, y, z) = 0$ (1.12)

En connaissant les relations entre coordonnées et le temps (1.10) c'est-à-dire loi du point, on peut trouver la position du point à chaque instant, sa vitesse et son accélération

$$v_x = \frac{dx}{dt} = \dot{x}$$
 $v_y = \frac{dy}{dt} = \dot{y}$ $v_z = \frac{dz}{dt} = \dot{z}$ (1.13)

Le module de la vitesse \overline{v} est égal à

$$v = \sqrt{v_x^2 + v_y^2 + + v_z^2} \tag{1.14}$$

La direction du vecteur v est donnée par les cosinus directeurs d'après les formules

$$\cos(\overline{v}, \overline{i}) = v_x / v; \quad \cos(\overline{v}, \overline{j}) = v_y / v; \quad \cos(\overline{v}, \overline{k}) = v_z / v$$
 (1.15)

Les formules (1.13) montrent que les projections du vecteur vitesse sur les axes x, y, z sont égales aux dérivées premières des coordonnés par rapport au temps.

Des relations analogues s'obtiennent pour les projections de l'accélération

$$a_{x} = \frac{dv_{x}}{dt} = \frac{d^{2}x}{dt^{2}}; \quad a_{y} = \frac{dv_{y}}{dt} = \frac{d^{2}y}{dt^{2}}; \quad a_{z} = \frac{dv_{z}}{dt} = \frac{d^{2}z}{dt^{2}}$$
 (1.16)

Le module d'accélération vaut