LECȚIA 9: TEORIA DE MEMBRANĂ A REZERVOARELOR DE ROTAȚIE (DE REVOLUȚIE)

9.1 Teoria de membrană (fig. 9.1)

Fig. 9.1: Starea de tensiune de tip membrană (PP_{σ} , incompleteă)

 \blacktriangleright Com: $\widetilde{\sigma}_{PP\sigma} \rightarrow fara \tau_{xy}$

Definiția 1. Membrană = placă extrem de subțire [(folie, exemplu: membranele din aparatul de telefon, inventție (Marconi)].

Caracteristicile definitorii ale teoriei de membrană :

-
$$M_r, M_{\theta}$$
 - neglijabile !

- variabile de lucru ϕ și θ : ϕ pe arcul median; θ pe cercul paralel.

- $D \cong 0$ (rigiditate la încovoiere neglijabilă)

Fig. 9.2: Structuri "pneumatice"; rezervoare; teoria de membrană

> *Com:* Teoria se extinde și la structurile gonflabile și la rezervorele de revoluție, la care rigiditatea cilindrică poate fi neglijată: $D = \frac{Eh^3}{12(1-v^2)} \cong neglijabila$

Fig.9.3 Geometria și echilibrul membranelor de revoluție (cu simetrie de rotație)

 $OO_1 = R_{\phi} =$ raza de curbură în planul meridian; $OO_2 = R_{\theta} =$ raza de curbură în planul paralel; Reperul cartezian OXYZ: OX = direcția tangentă la curba meridian (ϕ); OY = direcția tangentă la curba paralel (θ); OZ = direcția normalei exterioare în punctul O. Coordonate curbilinii ortogonale: $ds_1 = CC' = R_{\phi} d\phi$

 $ds_2 = DD' = R_{\theta}d\theta$

Elementul de arie:

dA=aria ABB'A'= $ds_1 ds_2 = R_{\phi} R_{\theta} d\phi d\theta$

- Ex. 9.4 Să se prezinte elementele geometrice de lucru în teoria rezervoarelor de rotație.Completați prezentarea din fig. 9.4.
- > *Com:* Eforturile de forfecare $N_{\phi\theta} = N_{\theta\phi}$ sunt identic nule în membranele de revoluție, încărcate și rezemate axial-simetric.

Fig. 9.4(a): Geometria (de completat)Fig.9.4(b): Tensiuni și eforturi de membranăFig.9.4: Tensiuni și eforturi în teoria de membrană

Eforturile de membrană se definesc astfel (fig. 9.4):

$$\begin{vmatrix} N_{\phi} = \int_{-\frac{h}{2}}^{\frac{h}{2}} \sigma_{\theta} dh = \sigma_{\phi} \cdot h \quad si \quad asemanator \\ N_{\theta} = \sigma_{\theta} h \\ N_{\theta\phi} = \tau_{\theta\phi} h \end{vmatrix}$$

($N_{\theta\phi}$ sunt identic nule în membrana de revoluție încărcată și rezemată axial-simetric).

9.2. Ecuațiile de echilibru diferențial

Ipoteze de lucru

I₁: h neglijabil dar numai pentru factorul de rigidate cilindrică: $D = \frac{Eh^3}{12(1-v^2)} \cong 0$

 \succ Com: h se folosește pentru a defini eforturile $N_{\phi} si N_{\theta}$ (fig.9.4 b)

I₂: Acceptăm calculul de ordin I (pentru N_{ϕ}) care are creșteri diferențiale de lineare de la C la C.

$$\blacktriangleright \quad Com: \mathbf{I}_2 \sin \frac{d\phi}{2} \cong \frac{d\phi}{2} \to \sin \frac{d\theta}{2} \cong \frac{d\theta}{2}$$

I₃: Neglijăm eforturile tangentțiale $N_{\theta\phi} = N_{\phi\theta} \cong 0$

9.3. Ecuațiile de echilibru (fig. 9.5)

Fig.9.5: Forțele de echilibru diferențial $\sum Z = 0; \sum X = 0; \sum Y = 0$

Prezintă interes numai ecuațiile de proiecție $\sum Z = 0$; $\sum X = 0$; ecuația $\sum Y = 0$ este identic satisfăcută în cazul teoriei de membrană-modelul axial-simetric.

În ecuația $\sum Z = 0$ se rețin relațiile *calculului de ordinul I*: $\sin \frac{d\phi}{2} \cong \frac{d\phi}{2}$ și se neglijează creșterea diferențială $\frac{\partial N_{\phi}}{\partial s_1} ds_1$; rezultă: $\downarrow \sum Z = 0 \rightarrow pds_1d_{s_2} - 2N_{\phi}ds_2 \frac{\sin d\phi}{2} - 2N_{\theta}ds_1 \frac{\sin d\theta}{2} \Rightarrow pds_1ds_2 = N_{\phi}ds_2d\phi + N_{\theta}ds_1d\theta = 0$

$$\begin{cases} d\phi = \frac{ds_1}{r_1} \\ d\theta = \frac{ds_2}{r_2} \end{cases} \Rightarrow pds_1ds_2 = \frac{N_{\phi}}{r_1}ds_1ds_2 + \frac{N_{\theta}}{r_2}ds_1ds_2 \\ \Rightarrow p = \frac{N_{\phi}}{r_1} + \frac{N_{\theta}}{r_2} \Rightarrow sau \quad inlocuind : r_1 = R_{\phi}. \quad si \quad r_2 = R_{\theta} \quad rezulta \quad ecuatia \quad lui \quad Laplace : \end{cases}$$

(Laplace): $\frac{N_{\phi}}{R_{\phi}} + \frac{N_{\theta}}{R_{\theta}} = p$

9.4. Concluzii practice . Aplicații

Ecuația de echilibru Laplace pune în relație eforturile axiale de membrană N_{ϕ} , N_{θ} cu curburile membranei $\frac{1}{R_{\phi}}; \frac{1}{R_{\theta}}$

Aceste rezultate vor fi utilizate în teoria stabilității plăcilor plane - [fig.9.6(a,b)]

Fig.9.6: Fenomenele de burdușire și de voalare

Măsuri tehnice de asigurare împotriva pierderii stabilității prin burdușire sau voalare, sunt *procedeele de nervurare* [fig. 9.7(a,b)].

Fig. 9.7(a): nervurare radială Fig. 9.7(b): Pentru grinzi cu inimă înaltă Fig. 9.7: măsuri de asigurare împotriva fenomenelor de pierdere a stabilității

Com: Teoria pentru fenomenul de voalare (burduşire) : în aceste zone , teoria de membrană , care este comprimată, se aplică punând p = 0 şi înlocuind curburile cu funcțiile (vezi RM).

Teoria pierderii stabilității prin voalare a fost elaborată acum un secol (~ 1910: KÁRMAN; ~ 1920 FÖPPL)

$$\frac{1}{R_{\phi}} \cong -\frac{\partial^2 w}{\partial x^2} \quad ; \quad \frac{1}{R_{\theta}} = -\frac{\partial^2 w}{\partial y^2}$$

Ex. 9.5 Rezervor cilindric, OL37.(fig. 9.8). Date: cilindru- teoria de membrană ,placă circulară - teoria PL-PPS

Se cer : 1. eforturile N_{ϕ} , N_{θ} în cilindru.

2. eforturile M_{θ} , M_r și w_{max} în placa circulară.

Placă circulară încărcată cu sarcina uniformă(introdusă de greutatea apei, înălțimea H

Fig. 9.8 Pentru enunțul ex. 9.5

Ex. 9.6 : Calcule de tip membrană pentru o geamandură (fig. 9.9)

Se cere : 1. T = ? în firul de fixare.

Indicație: Se folosește formula lui Arhimede.

2. Diagramele N_{ϕ} , N_{θ} în geamandură.

Indicație: Calculați γ_{OL} astfel încât geamandura să se afle în situația din figură.

Fig. 9.9: Pentru enunțul Ex: 9.6